Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys Rep (N Y) ; 4(2): 100156, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38718671

RESUMO

The quantification of physical properties of biological matter gives rise to novel ways of understanding functional mechanisms. One of the basic biophysical properties is the mass density (MD). It affects the dynamics in sub-cellular compartments and plays a major role in defining the opto-acoustical properties of cells and tissues. As such, the MD can be connected to the refractive index (RI) via the well known Lorentz-Lorenz relation, which takes into account the polarizability of matter. However, computing the MD based on RI measurements poses a challenge, as it requires detailed knowledge of the biochemical composition of the sample. Here we propose a methodology on how to account for assumptions about the biochemical composition of the sample and respective RI measurements. To this aim, we employ the Biot mixing rule of RIs alongside the assumption of volume additivity to find an approximate relation of MD and RI. We use Monte-Carlo simulations and Gaussian propagation of uncertainty to obtain approximate analytical solutions for the respective uncertainties of MD and RI. We validate this approach by applying it to a set of well-characterized complex mixtures given by bovine milk and intralipid emulsion and employ it to estimate the MD of living zebrafish (Danio rerio) larvae trunk tissue. Our results illustrate the importance of implementing this methodology not only for MD estimations but for many other related biophysical problems, such as mechanical measurements using Brillouin microscopy and transient optical coherence elastography.

2.
Soft Matter ; 15(42): 8566-8577, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31637393

RESUMO

Assemblies of anisotropic particles commonly appear in studies of active many-body systems. However, in two dimensions, the geometric ramifications of the finite density of such objects are not entirely understood. To fully characterize these effects, we perform an in-depth study of random assemblies generated by a slow compression of frictionless elliptical particles. The obtained configurations are then analysed using the Set Voronoi tessellation, which takes the particle shape into account. Not only do we analyse most scalar and vectorial morphological measures, which are commonly discussed in the literature or which have recently been addressed in experiments, but we also systematically explore the correlations between them. While in a limited range of parameters similarities with findings in 3D assemblies could be identified, important differences are found when a broad range of aspect ratios and packing fractions are considered. The data discussed in this study should thus provide a unique reference set such that geometric effects and differences from random assemblies could be clearly identified in more complex systems, including ones with soft and active particles that are typically found in biological systems.

3.
Front Physiol ; 7: 551, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27932987

RESUMO

It is well accepted that cells in the tissue can be regarded as tiles tessellating space. A number of approaches were developed to find an appropriate mathematical description of such cell tiling. A particularly useful approach is the so called Voronoi tessellation, built from centers of mass of the cell nuclei (CMVT), which is commonly used for estimating the morphology of cells in epithelial tissues. However, a study providing a statistically sound analysis of this method's accuracy is not available in the literature. We addressed this issue here by comparing a number of morphological measures of the cells, including area, perimeter, and elongation obtained from such a tessellation with identical measures extracted from direct imaging acquired by staining the cell membranes. After analyzing the shapes of 15,000 MDCK II epithelial cells under several conditions, we find that CMVT reasonably well reproduces many of the morphological properties of the tissue with an error that is between 10 and 15%. Moreover, cross-correlations between different morphological measures are reproduced qualitatively correctly by this method. However, all of the properties including the cell perimeters, number of neighbors, and anisotropy measures often suffer from systematic or size dependent errors. These discrepancies originate from the polygonal nature of the tessellation which sets the limits of the applicability of CMVT.

4.
Biophys J ; 106(7): L25-8, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24703316

RESUMO

It is well established that MDCK II cells grow in circular colonies that densify until contact inhibition takes place. Here, we show that this behavior is only typical for colonies developing on hard substrates and report a new growth phase of MDCK II cells on soft gels. At the onset, the new phase is characterized by small, three-dimensional droplets of cells attached to the substrate. When the contact area between the agglomerate and the substrate becomes sufficiently large, a very dense monolayer nucleates in the center of the colony. This monolayer, surrounded by a belt of three-dimensionally packed cells, has a well-defined structure, independent of time and cluster size, as well as a density that is twice the steady-state density found on hard substrates. To release stress in such dense packing, extrusions of viable cells take place several days after seeding. The extruded cells create second-generation clusters, as evidenced by an archipelago of aggregates found in a vicinity of mother colonies, which points to a mechanically regulated migratory behavior.


Assuntos
Resinas Acrílicas , Proliferação de Células , Células Madin Darby de Rim Canino/fisiologia , Resinas Acrílicas/química , Animais , Contagem de Células , Núcleo Celular/ultraestrutura , Colágeno/química , Meios de Cultura , Cães , Géis/química , Vidro/química , Dureza , Células Madin Darby de Rim Canino/citologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...